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The method of analytic continuation is applied to estimate eigenvalues of linear operators from
finite order results of perturbation theory even in cases when the latter is divergent. Given a
finite number of terms E(k), k = 1, 2, . . .M resulting form a Rayleigh-Schrödinger perturbation
calculation, scaling these numbers by µk (µ being the perturbation parameter) we form the sum

E(µ) =
∑

k
µkE(k) for small µ values for which the finite series is convergent to a certain numerical

accuracy. Extrapolating function E(µ) to µ = 1 yields an estimation to the exact solution of
the problem. For divergent series, this procedure may serve as resummation tool provided the
perturbation problem has a nonzero radius of convergence. As illustrations, we treat the anharmonic
(quartic) oscillator and an example from the many-electron correlation problem.

I. INTRODUCTION

Perturbative expansion of eigenvalues of linear
operators[1] is a common tool in many areas of quantum
physics when exact or numerically exact solutions are
not feasible by other techniques. Experience in many-
electron theory[2], for example, shows that Rayleigh-
Schrödinger Perturbation Theory (RSPT) usually pro-
vides good approximations at low orders, but the series
often proves to be divergent.
Although the a priori necessary and sufficient condi-

tions for convergence in RSPT are unknown, the reasons
for occurring divergence are well understood[1]. To re-
capitulate the essential points, consider a linear operator
(e.g., a Hamiltonian Ĥ) split as

Ĥ(z) = Ĥ(0) + z Ŵ . (1)

We refer to Ĥ(0) as the zero-order Hamiltonian and to Ŵ
as the perturbation. The coupling parameter z may or
may not have a physical meaning, we use it here merely
as a formal perturbation parameter. Case z = 1 refers
to the situation of physical meaning. Considering the
eigenvalue problem

Ĥ(z) Ψ(z) = E(z) Ψ(z), (2)

the eigenvalues E(z) formally depend on the perturba-
tion parameter, and RSPT provides us with its Taylor
expansion

E(z) =
∞
∑

n=0

znE(n) (3)

with E(n) being the contribution to the eigenvalue at
order n. Since we are interested in the physical value
E(z = 1), this Taylor series will be convergent if the
complex function E(z) is analytic inside and on the unit
circle |z| ≤ 1. Knowing the Hamiltonian at all complex
values z, one may find its eigenvalues E(z), and check
whether any singularity spoils its analycity within the
unit circle. Note, that this analysis is more demanding
than the original problem at z = 1, since Ĥ(z) is complex
and not Hermitian for complex values of z. Nevertheless,
such analyses can be found in literature (see, for example
Ref.[3]).

II. THEORY

Let us suppose that the PT problem has been solved for
the physical situation z = 1 up to a certain orderM . This
means one knows the contributions E(n) at z = 1 for n ≤

M , hence the partial sum E[M ] =
M
∑

n=0
E(n) is available.

For any value of z, one can easily (i.e., without resolving

the eigenvalue problem of Ĥ(z)) obtain the scaled values

E[M ](z) =

M
∑

n=0

znE(n) (4)

at practically no computational cost. The series above
will converge fast (in the sense that the terms already
around M become negligible) for sufficiently small values
of |z|, if the original series has a nonzero radius of conver-
gence. The sum of the scaled series can thus be obtained
within a given accuracy. Let us denote the largest value
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of |z| for which the partial sum in Eq.(4) has manifestly
converged (to a certain digit) by |z0|. Then |z0| serves
as a numerical estimation of the convergence radius of
the expansion. Since for |z| < |z0| the convergence is en-
sured, E(z) must be analytic there. The region |z| < |z0|
can be called as the trusted region.
We may try to use the |z| < |z0| domain of E(z) and

apply analytic continuation for |z| > |z0|, in a fortunate
case up to z = 1, along a contour which is free from any
singularity of E(z). For example, if no singularity ap-
pears on the real axis in the interval z0 < z ≤ 1, E(z) can
be extrapolated for z ∈ R up to the point corresponding
to the physical situation z = 1. In Section III, we shall
show some actual examples for which this technique was
working.
Among possible methods of analytic continuation, the

simplest is to fit a polynomial p(z) onto the converged
points for |z| < |z0|, and evaluate this polynomial at
z = 1. The p(1) value serves as en estimation to the ex-
act eigenvalue of Eq.(1). This simple procedure may work
quite well, although a polynomial form is fully adequate
if function E(z) is analytic everywhere on the complex
plane, in which case RSPT is convergent for all z. Never-
theless, polynomial extrapolation along the real axis may
be useful to sum up a divergent series, too, as demon-
strated below.
A more sophisticated procedure is to find fitting func-

tions which reflect the suspected singularity structure of
E(z). Such an idea was successfully used, in another
context, by Jeziorski et al. in the field of inter-molecular
interactions treated perturbatively[4, 5]. Here we test
the applicability of ratio of two polynomials (i.e., lin-
ear Padé approximants)[6], and quadratic Padé approx-
imants. The relevant formulae can be given as a linear
equation

q(z)E[NM ](z) = p(z) (5)

for linear Padé-s as yielding

E[NM ](z) =
p(z)

q(z)
(6)

which may show a pole-type singularity, and as a second
order equation

r(z)E2
[NMR](z) + q(z)E[NMR](z) = p(z) (7)

for the quadratic Padé approximants, having the solution

E[NMR](z) =
−q(z)±

√

q(z)2 + 4r(z)p(z)

2r(z)
(8)

exhibiting branchcuts potentially. In the above equations
p(z), q(z) and r(z) are polynomials of order N,M,R, re-
spectively. We emphasize that, unlike in the conventional
use of a Padé approximant, we do not solve the equations
(5) and (7) up to a certain order, but we propose to fit
the unknown coefficients in polynomials p, q and r to the
scaled, convergent result in the trusted region of E(z).

Several other techniques have been described to the
resummation of divergent series. The simplest idea is
to use linear[6] or quadratic[7] Padé approximants fit-
ting them directly to the terms of the divergent series at
z = 1 [8–10]. In many-electron theory, according to the
experience gained in our laboratory[11], their predictions
are rather uncertain. Standard mathematical resumma-
tion techniques like the Borel-summation[12, 13] cannot
be used in this field, since in practice usually we do not
know any formula for the series to be summed, just a
certain (finite) number of terms.

III. EXAMPLES

A. A trivial example

Suppose one is provided the series of numbers

1− 2 + 4− 8 + 16− 32± . . .

which is clearly divergent. Scaling it with a real param-
eter (we use notation µ instead of z if the parameter is
intentionally kept real) 0 < µ < 1/2 makes it convergent,
since the series in question can be considered as the Tay-
lor expansion of 1/(1 + 2x) for x=1, and this expansion
has a radius of convergence 1/2. Choosing µ = 0.4 e.g.
yields the convergent series

f(0.4) = 1−0.8+0.64−0.512+0.410−0.327±. . .= 0.555̇.

Since the function has a pole at x = −1/2, there are no
singularities in the interval [0,1]. Therefore, considering
the scaled converged values, one may draw the function
f(µ), and use a Padé approximant, as a function of µ, to
find an analytic form. The [0, 1] Padé fits exactly, and
gives the result of the resummation 1/(1 + 2) = 1/3, at
µ = 1. We report less trivial examples below.

B. Anharmonic oscillator

Consider the Hamiltonian of the harmonic oscillator
perturbed with a quartic term

Ĥ = −
1

2

d2

dx2
+

1

2
ωx2 + γx4. (9)

If the harmonic part is chosen as the zero-order Hamil-
tonian, so the perturbation is represented by the full
quartic term γx4, RSPT is known to be divergent for all
nonzero γ values[14, 15] due to a branching type singular-
ity at the origin. In other words, the PT series as applied
to the quartic anharmonic oscillators has a zero radius
of convergence in this partitioning. This system seems
therefore unsuitable for the resummation technique out-
lined in Section II which requires a nonzero radius of
convergence. However, one can change the partition of
the Hamiltonian, and apply the so-called Epstein-Nesbet
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FIG. 1. Perturbational energy contributions for the quartic
anharmonic oscillator in Epstein-Nesbet partitioning. The
value of coupling constant is γ = 0.1. (Atomic units are
used.)

TABLE I. Perturbational energy contributions for the quar-
tic anharmonic oscillator with the coupling constant value
γ = 0.1 for a few selected values of the scaling parameter µ.
Scaling is done by µn, n being the order of perturbation.

energy correction [a.u.]

order original scaled

n µ =1.0 µ =0.2 µ =0.4 µ =0.6

0 0.0 0.000000 0.000000 0.000000

1 0.0 0.000000 0.000000 0.000000

2 -0.017660 -0.000706 -0.002826 -0.006358

3 0.003103 0.000025 0.000199 0.000670

4 -0.001817 -0.000003 -0.000047 -0.000236

5 0.000873 0.000000 0.000009 0.000068

6 -0.000567 -0.000000 -0.000002 -0.000026

7 0.000372 0.000000 0.000001 0.000010

8 -0.000273 -0.000000 -0.000000 -0.000005

9 0.000207 0.000000 0.000000 0.000002

10 -0.000167 -0.000000 -0.000000 -0.000001

. . .

40 -0.001651 -0.000000 -0.000000 -0.000000

. . .

50 -0.017227 -0.000000 -0.000000 -0.000000

SUM ∞ -0.000684 -0.002666 -0.005876

(EN) partitioning[16, 17], in which all diagonal matrix
elements of γx4 are shifted to the zero-order, result-
ing zero first order corrections. We have pointed out
previously[18] that in the EN partitioning the RSPT has
a finite radius of convergence, it is convergent e.g. for
γ = 0.025 but it is already divergent for γ = 0.1. The
latter, divergent case is illustrated in Fig.1.

We apply the scaling procedure as follows. In an in-
terval 0 < µ < |z0| within the PT in the EN partitioning
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FIG. 2. Analytic continuation of the energy of the quartic
anharmonic oscillator at coupling constant γ = 0.1. Scaled
values are indicated by purple + symbols.

is made convergent after scaling, we scale the original di-
vergent energy contributions. In Table I. we show the
result for scaling values µ = 0.2, 0.4, and 0.6, as exam-
ples. The numbers in the column µ = 1.0 clearly indicate
that the series is divergent (as illustrated also in Fig.1).
However, even for µ = 0.6, the scaled series turns to be
nicely convergent. The last row of the Table shows the
sum of the contributions.

The scaled sums for a large number of values of µ are
plotted in Fig.2. The figure shows also the exact energy
obtained by numerical solution of the Schrödinger equa-
tion, as well as the curve obtained by fitting a 6-order
polynomial to the scaled values. The fitted curve repre-
sents a very simple means of analytic continuation, and
on the given scale of the figure (millihartrees) it matches
the exact line at µ = 1. The method described in Section
II can therefore be used as a resummation technique for
the divergent PT series of the anharmonic oscillator.

To gain an insight into the accuracy of analytic contin-
uation, we compare the results of a few fitting procedures
in Table II. We start for a simple second order polyno-
mial, test a fourth order one, and report the accuracy of
a sixth order polynomial (the latter was shown in Fig.2).
The table shows a gradual improvement when using fit-
ting polynomials of order 2, 4, and 6, respectively.

Table II. also shows extrapolated energies predicted by
[2,2], [4,4] and [6,6] Padé approximants corresponding to
Eq.(6). Although the [6,6] Padé approximant has greater
flexibility, the predicted energy is almost the same as that
of a 6th order polynomial, both showing an error of 1 mi-
crohartree. An important difference from the polynomial
case is that [N,N ] Padé approximants are less sensitive
to N : already for N = 2 we obtain 6 digit accuracy (the
perfect match between E[2, 2] and the exact energy is
accidental).

As to the performance of quadratic Padé approximant
of Eq.(8), as extrapolation tools, our experience is simi-
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TABLE II. Predicted values for the energy of quartic anhar-
monic oscillator with coupling constant γ=0.1 as obtained
from analytic continuation.

method of continuation energy [a.u.]

polynomial of order 2 -0.016352

polynomial of order 4 -0.015866

polynomial of order 6 -0.015853

[2, 2] linear Padé approximation -0.015854

[4, 4] linear Padé approximation -0.015853

[6, 6] linear Padé approximation -0.015855

[2, 2, 2] quadratic Padé approximation -0.015858

[4, 4, 4] quadratic Padé approximation -0.015853

[6, 6, 6] quadratic Padé approximation -0.015853

exact solution -0.015854

TABLE III. Dependence of the predicted energies as obtained
by fitting [6,6,6] quadratic Padé approximants for the anhar-
monic oscillator from the size of the fitting region.

fitting region E[6,6,6] number of orders used

[0− 0.4] 0.015868 6

[0− 0.5] 0.015850 8

[0− 0.6] 0.015851 10

[0− 0.7] 0.015853 24

exact result 0.015854 ∞

lar. Already E[2, 2, 2] differs from the exact energy only
by a few microhartree, while E[4, 4, 4] and E[6, 6, 6] are
practically exact.
It is also worth investigating how the predicted ener-

gies depend on the number of orders used. As it can be
deduced from Table I., up to 6 digits accuracy, 4 orders
are necessary to consider for µ = 0.2, and one needs 10
orders for µ = 0.6. As we checked, the series is definitely
convergent up to µ = 0.7, and at this point one needs 24
orders to achieve microhartree (i.e., 6 digits) accuracy. In
Table III. we collect a few numerical examples showing
the relations among the size of the part of the trusted
region used for fitting, the accuracy of the extrapolation,
and the number orders one has to know to carry out the
procedure.

C. Correlation energy

Divergent perturbation series often emerge in many-
electron theory when one tries to evaluate electron cor-
relation energy perturbatively. Consider for example
the dissociation problem of the water molecule in the
Møller-Plesset partitioning[19], where the zero-order is
the Hartree-Fock, and electron correlation gives rise to
the perturbation. Table IV. presents the perturbation
corrections of the energy at an elongated O—H distance
(2.5 times the equilibrium bond length) in a basis set
where each atomic valence orbital is described by three

TABLE IV. Correlation energy of the water molecule with
elongated OH bonds as obtained by many-body perturbation
theory in the Møller-Plesset partitioning. Scaling is done by
µn, n being the order of perturbation.

energy correction [a.u.]

order original scaled

n µ = 1 µ = 0.3 µ = 0.2 µ = 0.1

2 -0.254895 -0.022941 -0.010196 -0.002549

3 -0.070076 -0.001892 -0.000561 -0.000070

4 -0.055826 -0.000452 -0.000089 -0.000006

5 0.005759 0.000014 0.000002 0.000000

6 0.001211 0.000001 0.000000 0.000000

7 0.027852 0.000006 0.000000 0.000000

8 -0.007082 -0.000000 -0.000000 -0.000000

9 -0.003692 -0.000000 -0.000000 -0.000000

10 -0.037333 -0.000000 -0.000000 -0.000000

∞ -0.025264 -0.010844 -0.002625
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FIG. 3. Convergence of the perturbation series of the corre-
lation energy for the water molecule with elongated OH bond
lengths in Møller-Plesset partitioning. The inset shows the
divergence at large orders.

functions and a d orbital on O is added (the so-called 6-
311G* basis[20]). A few scaled series are also tabulated
in columns 3–5 of the Table at some selected values of µ.
Fig. 3 shows the partial sums order by order at µ = 1.
While the original series is apparently divergent, scaling
by small values of µ makes it fast converging (cf. Table
IV.) permitting one to find the sum of the series easily
up to a certain number of digits (6 in the tabulated ex-
amples). The chosen values of µ in Table IV. are merely
for illustration: Fig. 4 shows the E(µ) function plotted
on a fine grid in the interval 0 < µ < 0.7. The upper
limit of 0.7 was chosen to be confidently smaller than the
observed convergence radius of the series. (To estimate
the convergence radius, we used the method of quadratic
Padé approximants as proposed by Goodson[7]. In the
present case we have found a pair of points of singular-



5

ity a little bit off the real axis predicting a convergence
radius ≈ 0.9, and a divergent PT series thereby[11].)
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FIG. 4. Analytic continuation of the scaled sums of per-
turbative corrections for the correlation energy of the water
molecule. The horizontal levels marked as ”MPn” indicate
the energies of the PT series at order n. Dense purple dots
indicate the scaled sums, continued by the red solid curve by
polynomial fitting. The green horizontal line ”FCI” indicates
the correlation energy as obtained by exact diagonalization
with the two core (1s) electrons are kept frozen.

According to the proposed procedure, this function is
continued analytically to the point µ = 1. Fig. 4 shows
the result of one of the simplest methods of analytic con-
tinuation: least-squares fit of a polynomial of order 6 to
the scaled values. The value of the curve at µ = 1 can
be considered as the result of the resummation of the
divergent PT series.

In Table V. we compare the resummed values obtained
from simple polynomial fitting and using the ratio of two
polynomials (linear Padé approximation, cf. Eq.(5)) to
the result of exact diagonalization which is manageable
in this case (the order of the matrix is 2,342,224). We
were unsuccessful in fitting a quadratic Padé formula for
this system. The data in Table V. indicate that, in spite
of the strongly divergent nature of many body Møller-
Plesset perturbation theory in this example, the analytic
continuation method provides an acceptable estimate,
showing energy errors in the order of a millihartree or
less.

TABLE V. Correlation energy of the water molecule at 2.5
equilibrium distance predicted by analytic continuation

method of continuation correlation energy [a.u.]

polynomial of order [6] -0.43266

[6, 6] linear Padé approximation -0.43715

exact (full-CI) result -0.43725

IV. CONCLUSION

The examples of the anharmonic oscillator and the cor-
relation energy calculation by PT show that it may be
possible to find a simple resummation procedure for a
divergent PT series yielding physically relevant results.
The technique proposed is to scale down the PT contri-
butions with the relevant powers of the order parame-
ter µ below the convergence radius of the series (i.e., to
the trusted region), sum the series for several values of
µ, then continue analytically the function to the point
µ = 1.
Though evaluation of original PT contributions may

be hard if the underlying problem is difficult, the extrap-
olation procedure we used here is practically costless: we
merely manipulate with the numbers we have for the PT
contributions.
Since the closed form of the summed values as a func-

tion of µ are usually not known, analytic continuation
requires some numerical extrapolation procedure in prac-
tice. This raises several dilemmas. If polynomial extra-
polation is applied, it is clearly useless to determine the
coefficients of the polynomial (i.e., the derivatives of the
function to be extrapolated) at µ = 0, as it would simply
recover the original (divergent) series. Resorting to very
small values of µ inherits this problem, although it would
ensure very fast convergence of the scaled series. On the
other hand, using larger values of the order parameter
within the trusted region the function makes it easier to
extrapolate, but the slower convergence for these values
of µ may generate numerical uncertainties questioning
the accuracy of the resummation. Here we decided to
use the rather wide interval µ ∈ [0, 0.7] for fitting the
polynomial, which yielded the accuracy shown above.
Another dilemma is manifested in choosing the func-

tional form of the function to fit. The polynomial is the
simplest idea, but its order has to be carefully chosen to
provide sufficient flexibility but avoid numerical uncer-
tainties that may arise with high order forms. As shown
for the case of the anharmonic oscillator, a second order
polynomial can give only a meaningful estimate, while 4
and 6 order polynomials yield quite accurate results.
Somewhat more stable results were obtained if, instead

of a simple polynomial, the ratio of two polynomials were
applied as extrapolating functions. For the anharmonic
oscillator, a [2,2] Padé approximant gives already a very
nice result.
Since the singularities of functions E(z) spoiling con-

vergence of its perturbational expansions are often
branchings, a virtually more sophisticated extrapolation
function class is offered by quadratic Padé approximants
Eqs.(5) and (6). For the example studied, we did not
see much difference from linear Padé approximants, both
were found to be quite accurate for the anharmonic oscil-
lator. No reassuring results for quadratic Padé-s have yet
been obtained however for the water correlation energy.
Theoreticians are herewith invited to find extrapola-

tion schemes better for this purpose, perhaps by find-
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ing more appropriate and flexible fitting functions. A
roboust solution of this question would add a more practi-
cal aspect to the ideas of conceptual importance reported
above.
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